Men and women score similarly in most areas of mathematics, but a gap favoring men is consistently found at the high end of performance. One explanation for this gap, stereotype threat, was first proposed by Spencer, Steele, and Quinn (1999) and has received much attention. We discuss merits and shortcomings of this study and review replication attempts. Only 55% of the articles with experimental designs that could have replicated the original results did so. But half of these were confounded by statistical adjustment of preexisting mathematics exam scores.
Read MoreRecent methods for learning vector space representations of words have succeeded in capturing fine-grained semantic and syntactic regularities using vector arithmetic , but the origin of these regularities has remained opaque. We analyze and make explicit the model properties needed for such regularities to emerge in word vectors. The result is a new global log-bilinear regression model that combines the advantages of the two major model families in the literature: global matrix factorization and local context window methods. Our model efficiently leverages statistical information by training only on the nonzero elements in a word-word co-occurrence matrix, rather than on the entire sparse matrix or on individual context windows in a large corpus. The model produces a vector space with meaningful sub-structure, as evidenced by its performance of 75% on a recent word analogy task. It also outperforms related models on similarity tasks and named entity recognition.
Read More